交通流缺失数据的修补技术探究

作者:袁媛; 邵春福; 林秋映; 何兆成; 谭美琳
来源:中国公共安全(市场版), 2016, (04): 70-76.
DOI:10.3969/j.issn.1672-2396.2016.04.016

摘要

城市道路交通中交通检测器获得的数据往往不完整,存在丢失现象,需要对其进行修补,以保证交通流预测模型的实际应用精度。以离散和连续缺失的线圈检测器交通流量数据为研究对象,提出一种基于最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)的交通流时间序列数据修补模型,并将其结果与利用RBF神经网络模型和一元非线性回归模型的结果进行比较。研究结果表明,LS-SVM模型修补精度优于RBF(Radical Basis Function)神经网络模型和非线性回归模型。最后,针对历史数据缺失难以构建LS-SVM模型的问题,提出了两阶段故障数据修补组合模型,取得了好的效果。

全文