基于改进的RRU-Net的图像篡改检测算法

作者:卫星星; 吴建斌; 涂雅蒙; 袁林锋
来源:微电子学与计算机, 2024, 41(03): 53-58.
DOI:10.19304/J.ISSN1000-7180.2022.0811

摘要

针对现有深度学习图像篡改检测模型难以利用网络浅层的篡改痕迹特征,导致检测效果差、定位精度低的问题,提出基于改进环形残差U-Net(Ringed Residual U-Net, RRU-Net)的图像篡改检测算法。首先利用分级监督策略设计篡改融合定位模块,将模型分层输出,使深、浅层特征信息充分融合,提高模型对浅层的纹理、边缘信息的敏感性。其次在二元交叉熵基础上对损失函数进行改进,用不同层的损失来衡量总损失。最后在模型中运用组归一化,加快模型收敛速度,同时避免过拟合。在CSAIA和Columbia数据集上的实验结果与RRU-Net相比,F1值分别提高了0.08和0.072,表明该方法具有较高的检测精度,且能有效定位篡改区域。

全文