摘要

为提高球形果蔬分选效率以及降低分选成本,提出了一种在机器视觉技术下球形果蔬多特征组合的智能分选方法。针对单一特征刻画图像特征不全面的问题,建立了颜色矩、Zernike矩、灰度共生矩阵三种特征的组合特征模型,用以确定果蔬的综合特征。Zernike矩在计算前进行了基于H分量阈值二值化图像边缘提取。利用BP神经网络和支持向量机构造分类器,分别对实验样本进行分选。通过仿真实验,验证了多特征组合算法的可行性和有效性,对比分析了BP神经网络和支持向量机分类器对分选效果的影响,分选率均达到了95%以上。