摘要
PM2.5浓度的预测对于大气污染治理、改善环境质量等起到重要作用。受气象条件变化与大气污染物排放等多种因素的交叉影响,PM2.5预测通常易受突变事件及噪声数据干扰。因此,基于对气象条件以及大气污染物与PM2.5的相关性分析,提出阶段式时序注意力网络模型(staged temporal-attention network, STAN),该方法融合多段注意力学习模块与循环神经网络,建模气象因素与大气污染物对PM2.5浓度的交叉影响。统计分析北京市、上海市、广州市预测结果的绝对误差值,可知:1)对比广泛使用的单一类模型支持向量机(support vector machine, SVM)、长短期时序记忆方法 (long short-term memory, LSTM)和多层感知机(multilayer perceptron, MLP), STAN可达到10%以上的性能领先;对比最新的融合类模型U型网络(U-net),STAN领先了7%的优势。2)以北京市冬季预测结果为例进行统计分析,STAN的预测值与实测值之间的拟合系数可有95.2%的性能领先。此外,在鲁棒性分析中发现,STAN在含有10%噪声的数据上进行预测,误差上升幅度仅为9.3%。结果表明:注意力机制与时序学习模块相结合能够深度挖掘PM2.5变化规律并抑制噪声数据,且STAN模型可以进行PM2.5浓度的鲁棒预测。
- 单位