摘要

为了及时、准确地识别采摘后贮藏期间的损伤猕猴桃,降低果实腐烂及交叉感染带来的损失,采用近红外漫反射光谱技术结合极限学习机(ELM)建立了采摘后2℃冷藏下10天内的碰撞损伤猕猴桃、挤压损伤猕猴桃与无损猕猴桃的动态判别模型。分别比较了无信息变量消除法(UVE)与连续投影算法(SPA)结合UVE优选特征波数建模对简化模型、提高预测性能的影响。结果表明,碰撞损伤猕猴桃比挤压损伤猕猴桃更容易同无损猕猴桃区分开来,且随着贮藏时间的延长,损伤猕猴桃更容易被识别;UVE-SPA-ELM模型的判别效果最好,在采后贮藏10天内预测集中损伤猕猴桃和无损猕猴桃的总正确识别率为92.4%。该检测技术具有较高的检测精度和适用性,可用于快速、无损鉴别损伤猕猴桃。