摘要

文章针对物业投诉短文本人工输入内容复杂、提取特征较困难等问题,提出一种基于字符级文本表示的CNBG深度学习联合模型。该模型首先将物业投诉工单文本进行字符向量表示,然后分别输入到卷积神经网络CNN和双向门控循环单元BiGRU提取特征,并将它们提取到的特征进行融合,最后实现文本分类。实验结果表明,基于字符级CNBG深度学习联合模型在物业投诉工单分类任务上得到的比其它基准模型平均高15%,在物业投诉工单数据集上能够取得更好的效果。

  • 单位
    南京审计大学