摘要

基于反向传播(Back Propagation,BP)神经网络强大的非线性逼近和自学习能力,设计3层网络模型,采集发动机台架试验数据作为样本进行模型训练和检验.以发动机转速、转矩、供油提前角和以天然气为原料的费托燃油(GTL)与柴油混合燃料特性参数十六烷值、硫含量、芳香烃含量为输入,建立BP神经网络模型预测GTL发动机特性.结果表明,采用该模型可同时预测GTL发动机功率、油耗、排温、HC、CO、CO2、NOx和碳烟排放等特性;与试验数据对比,预测结果的相对误差基本在5%以内,表明该模型具有较高的模型精度和良好的泛化能力.