利用欧拉函数的性质与初等数论的方法,讨论包含勾股数的Euler函数非线性方程φ(xyz)=aφ(x)+bφ(y)+cφ(z)-m(a,b,c为勾股数且gcd(a,b,c)=1),当(a,b,c)=(3,4,5)且m=16时的正整数解情况,并证明该方程共有28组正整数解。