摘要
溶解氧浓度是湖泊生态健康评价中的关键指标,因浅水碟形湖的水文独特性,使得溶解氧(DO)愈加具有不稳定性和非线性特征。为准确预测碟形湖中的DO浓度,基于鄱阳湖典型碟形湖监测数据集,结合主成分分析法(PCA)、最大信息系数(MIC)和长短时记忆神经网络(LSTM)预测碟形湖DO含量的模型。结果表明:与支持向量回归(SVR)、LSTM模型相比,基于PCA-MIC-LSTM的模型预测精度显著提高,其确定系数高达0.99以上,均方根误差为0.039 mg/L,平均绝对百分误差为0.301%;其中,PCA降噪处理比MIC特征提取更能影响LSTM模型预测的效果,可以显著降低误差率。研究的PCA-MIC-LSTM模型可为同类型湖泊水体保护工作的开展提供参考。
- 单位