改进MOG-LRMF的铁轨动态异物检测

作者:侯涛*; 伍海萍; 牛宏侠
来源:交通运输系统工程与信息, 2020, 20(02): 91-100.
DOI:10.16097/j.cnki.1009-6744.2020.02.014

摘要

针对复杂铁路环境下动态入侵异物检测精度低和抗扰能力差等问题,提出一种基于改进MOG-LRMF算法的铁路轨道异物入侵实时检测方法.引入仿射变换,对视频序列可能出现的抖动进行预校正处理;分析MOG-LRMF模型特点,利用MOG模型对视频帧中的背景进行建模,用前一帧背景中学习到的知识对当前帧背景进行预测,优化MOG-LRMF参数求解模型;利用EM算法对改进MOG-LRMF模型进行参数求解,实现背景在线实时更新.实验结果表明,改进的MOG-LRMF算法在光照充足、光线较弱、相机存在抖动、背景复杂及存在多个目标情形下都能提高目标检测精度,具有较好的抗干扰性、鲁棒性和快速性.