摘要
针对中文医疗电子病历命名实体识别中,传统的字或词向量无法很好地表示上下文语义以及传统RNN并行计算能力不足等问题,提出了一个基于BERT的医疗电子病历命名实体识别模型。该模型中的BERT预训练语言模型可以更好地表示电子病历句子中的上下文语义,迭代膨胀卷积神经网络(IDCNN)对局部实体的卷积编码有更好的识别效果,多头注意力(MHA)多次计算每个字和所有字的注意力概率以获取电子病历句子的长距离依赖。实验结果表明,BERT-IDCNN-MHA-CRF模型能够较好地识别电子病历中的医疗实体,模型的精确率、召回率和F1值相比于基线模型分别提高了1.80%,0.41%,1.11%。
- 单位