摘要
现代电力系统因其“双高”特性造成电能质量扰动模式愈加复杂,对复合扰动的准确分类提出了挑战。传统电能质量扰动分类方法在特征提取阶段所提取的特征由人为确定,难以判断所提取的特征对分类问题是否有效,加之多重复合扰动特征相互耦合导致扰动特征的可分性确定困难。为此,提出一种基于粒度的计算方法进行特征选择的模型。在提取的扰动特征集的基础上,通过构建多粒度空间反映特征分布差异性,进而挖掘各粒度下的最优特征子集以确定有效和冗余的分类特征,达到优化分类效果的目的。在此基础上,通过集成分类模型融合不同粒度空间最优扰动特征集所训练的同质弱分类器模型,提出一种新的电能质量扰动多粒度集成分类方法。该方法克服了现有方法在进行多粒度分类时通过寻找最优单粒度空间特征而导致的其他粒度空间信息丢失的问题。实验表明,多粒度特征选择算法可提取对分类有效的扰动特征,集成分类模型可进一步改善模型的分类性能。
- 单位