摘要
针对现有k-means聚类图像分割方法存在对初始聚类中心敏感、易错分割以及运行时效低等问题,提出了一种基于统计直方图k-means聚类的水稻冠层图像分割方法。该方法首先根据图像直方图蕴含的像素数量先验信息,选择像素数量差异较大的像素值作为水稻冠层图像的初始聚类中心;然后再利用图像直方图中像素值与图像像素数量的先验对应关系,对水稻冠层图像聚类目标函数权值化;最后依据k-means聚类框架对水稻冠层图像进行聚类分割。为了验证本方法的有效性,分别同基于k-means、k-means++、k-mc2、afk-mc2等4种主流均值聚类的水稻冠层图像特征像素提取方法进行对比试验。结果表明:对于临稻20号、武运粳32号以及中粳798号成熟中期水稻冠层图像聚类分割,常光下本方法的平均类内平方差分别为36.6、29.5、29.5,平均类间平方差分别为67.5、51.8、51.8,平均运行时间分别为0.2 s、0.3 s、0.3 s;强光下本方法的平均类内平方差分别为15.2、4.9、12.1,平均类间平方差分别为30.9、9.5、21.2,平均运行时间分别为0.3 s、0.2 s、0.3 s,均优于以上4种聚类方法。
-
单位农业农村部南京农业机械化研究所; 嘉应学院; 电子工程学院