摘要
为了快速、准确识别小麦籽粒的完整粒和破损粒,设计了基于卷积神经网络(CNN)的小麦籽粒完整性图像检测系统,并成功应用于实际检测中。采集完整粒和破损粒两类小麦籽粒图像,对图像进行分割、滤波等处理后,建立单粒小麦的图像数据库和形态特征数据库。采用LeNet-5、AlexNet、VGG-16和ResNet-34等4种典型卷积神经网络建立小麦籽粒完整性识别模型,并与SVM和BP神经网络所建模型进行对比。结果表明,SVM和BP神经网络所建模型的验证集识别准确率最高为92. 25%; 4种卷积神经网络模型明显优于两种传统模型,其中,识别性能最佳的AlexNet的测试集识别准确率为98. 02%,识别速率为0. 827 ms/粒。基于AlexNet模型设计了小麦籽粒完整性图像检测系统,检测结果显示,100粒小麦的检测时间为26. 3 s,其中,图像采集过程平均用时21. 2 s,图像处理与识别过程平均用时为5. 1 s,平均识别准确率为96. 67%。
- 单位