由于图像的复杂性和人类情感的主观性,图像情感分类是一项非常具有挑战性的任务.针对深度学习方法没有充分考虑图像先验信息的问题,提出一个新的多层次深度卷积神经网络框架.该框架综合考虑全局和局部视角,引入显著主体、颜色和局部等先验信息,从多个层次学习图像的情感表达.实验结果表明,在公开的大数量级和小数量级情感图库上,该框架的分类准确率均高于现有的图像情感分类方法,其平均分类准确率比最优方法提高了2.8%,特别在情感类别"厌恶"上提高了15%.