摘要
建立三维矿体模型是数字矿山、智慧矿山的基础。针对经典径向基函数曲面重建算法在原始数据稀疏时出现曲面边界自拟合及模型不连续现象,提出了一种集成多种机器学习模型的径向基函数曲面复杂矿体三维建模方法。该方法利用Stacking模型学习矿体轮廓线离散化点云数据的分布特征,建立表征矿体模型几何信息的有向点集;在此基础上提取边界点及法向量,通过Hermite型径向基函数建立隐式场,最后基于行进四面体算法建立三维矿体模型。与轮廓线拼接法、经典径向基函数曲面重建算法、简单克里金插值法对比分析,该方法能够有效减少曲面边界自拟合现象,减少模型多余孔洞,提高模型的连续性;建立的模型所切轮廓线与原始轮廓线相似度达75.14%,与人工干预程度较高的显式模型相当;在体积表征上与显式模型的差距达到最低。
- 单位