摘要
对抗样本是当前深度学习神经网络研究的热点问题.目前,对抗样本技术的研究主要分为2方面:生成攻击、检测防御.在总结对抗样本生成攻击技术的基础上,面向图像数据的对抗样本检测与防御技术综述从对抗样本的检测与防御的角度对面向图像数据的对抗样本防御技术进行了总结.综述从特征学习、分布统计、输入解离、对抗训练、知识迁移及降噪6个方面将检测与防御技术进行归类,介绍检测与防御技术的演进,分析其特点、性能,对比不同技术的优缺点,给出了检测效果和防御效果的综合评价.最后对当前该领域的研究情况进行了总结与展望.
-
单位信息工程大学