摘要
针对在大量图像中进行图像检索的准确度不高的问题,提出了一种显著性检测和卷积神经网络相结合的两阶段图像检索模型NL-VG。在模型的第一阶段使用局部特征图与全局特征图相结合的非局部深度特征模型(NLDF)进行显著性检测;在第二阶段使用VGG-16卷积神经网络进行特征提取得到特征向量,将得到的特征向量利用相似性度量方法和建立的图像检索库相匹配并显示与之相似的图像;使用交互式界面工具包PyQt5设计图像检索系统实现检索任务。使用网络爬虫技术获取图片并预处理构建数据集,对数据集上所有图像通过两阶段的显著性检测模型进行检测得到图像特征库。实验结果表明:所提出的检索算法map值为0.767,相较于SpoC等算法精度有所提高,查询结果更符合预期。
- 单位