摘要

本发明公开了一种基于循环一致生成对抗网络的不平衡数据分类方法,主要解决现有技术中分类模型对噪声数据敏感、数据层方法合成样本存在类间重叠以及合成样本特征多样性匮乏的问题。其实现步骤为:1)对原始数据集进行预处理;2)根据预处理后数据构建孪生数据对集;3)设计内部有两组判别器和生成器的循环一致生成对抗网络;4)用孪生数据对集中的数据对网络模型进行迭代训练,合成目标少数类样本数据;5)将目标少数类样本数据增强到原始数据集得到平衡数据集,并用该数据集训练基础分类器,完成分类。本发明能够能够在一定程度上降低分类模型对噪声数据的敏感度,有效提高分类结果准确率、改善分类性能,可用于网络异常检测。