摘要
讨论了R2空间中有界单连通区域上的一阶变形Helmholtz方程k+xyyk-xf1(x,y)f2(x,y[])=g1(x,y)g2(x,y[]),满足边界条件w+(t)=G(t)w-(t)+g(t)的Riemann边值问题.利用广义解析函数Riemann边值问题的理论,先将变形Helmholtz方程Riemann边值问题转化为最简形式的跳跃问题,再利用广义Cauchy型积分得出其在非齐次边界条件下的一个特解,最终求出复方程在齐次边界条件下的通解,即分别在不同情况下,获得复方程满足齐次和非齐次边界条件的可解条件及解的表示.
- 单位