摘要
生成式对抗网络(GAN)是一种优秀的生成式模型,能够不依赖任何先验假设,学习到高维复杂的数据分布。这一强大的性能使得它成为近年来研究的热点,并在诸多应用领域取得了显著的研究成果。首先介绍了生成式对抗网络的基本原理,各种目标函数以及常用的模型结构。然后,详细分析了生成式对抗网络在条件限制下生成图片的各种演进方法。此外,介绍了生成式对抗网络在不同领域的应用,包括高分辨率图像生成、小目标检测、非图像数据生成、医学图像分割等方面的最新研究进展。最后,总结了生成式对抗网络训练过程中的优化技巧。旨在通俗地阐明GAN的基础理论以及发展历程,并从应用角度对未来工作进行了展望。
-
单位嵌入式系统与服务计算教育部重点实验室; 同济大学