摘要

共空间模式侧重提取信号的空间信息,是脑电信号中滤波和特征提取的常用算法之一。然而脑电信号的时间窗、频带和通道的选择都会影响其分类结果。为了提高CSP特征的表征能力,采用了基于相关系数的脑电通道选择方法,结合时频共空间模式提取特征,提出了通道选择共时频空间模式(CS-CTFSP)新框架。首先利用通道间相关性,在主通道的基础上筛选合适的通道集合;并利用时频共空间模式从每个时间窗口的多个子频带中提取CSP特征;接着引入一种子频带筛选方法去除无区分能力的频带单元后,结合LASSO提取稀疏特征;最后采用LDA分类器对脑电信号进行分类。在对BCI Competition III Dataset IVa和BCI Competition IV Dataset I二分类运动想象任务的分类实验中,平均分类精度达到91.10%和87.92%,并与其他运动想象方法进行了比较,验证了本文方法的有效性。