摘要

为了提高预测锂离子电池剩余使用寿命(RUL)的精度,提出了一种基于改进型粒子群算法(IPSO)与门控循环单元(GRU)神经网络的锂离子电池RUL预测模型。首先,通过改变PSO算法的惯性权重和学习因子的更新规则,提高其寻优能力;然后,通过IPSO算法优化GRU神经网络的参数选择,搭建IPSO-GRU模型。最后,利用美国国家航空航天局(NASA)公开的锂离子电池实验数据进行试验,验证IPSO-GRU模型的准确性。实验结果表明,相比于直接采用单一GRU模型,所提IPSO-GRU模型降低了容量预测误差,有效提高了锂离子电池RUL预测精度。