摘要

近红外光谱技术(near infrared spectroscopy,NIRS)结合波段筛选方法及建模算法可以实现中药生产过程分析的快速、无损检测。该文针对银参通络胶囊关键工艺银杏叶大孔树脂纯化过程,实现对洗脱液中槲皮素、山柰酚和异鼠李素3种成分含量的快速测定。通过马氏距离算法剔除异常光谱,联合X-Y距离样本集划分(sample set partitioning based on joint X-Y distances,SPXY)方法划分数据集,基于协同区间偏最小二乘法(synergy interval partial least squares,siPLS)筛选的关键信息波段,在此基础上实施竞争自适应加权重采样方法(competitive adaptive reweighted sampling,CARS)、连续投影算法(successive projections algorithm,SPA)和蒙特卡洛无信息变量消除法(Monte Carlo uninformation variable elimination,MC-UVE)筛选波长以得到更少但更关键的变量数据,将其作为输入变量建立遗传算法优化的极限学习机(genetic algorithm joint extreme learning machine,GA-ELM)定量分析模型,并将模型性能与偏最小二乘回归(partial least squares regression,PLSR)方法建立的模型进行比较,结果表明siPLS-CARS-GA-ELM算法联用可实现以最少变量数达到最优的模型性能。槲皮素、山柰酚、异鼠李素的校正集相关系数Rc和验证集相关系数Rp均达到0.98以上,校正集误差均方根(root mean square error of calibration,RMSEC)、验证集误差均方根(root mean square error of prediction,RMSEP)和验证集相对偏差(relative standard errors of prediction,RSEP)分别为0.030 0,0.029 2,8.88%;0.041 4,0.034 8,8.46%;0.029 3,0.027 1,10.10%,相较于传统PLSR方法,所建立GA-ELM模型性能有较大提升,证明NIRS结合GA-ELM方法实现中药有效成分快速测定具有很大潜力。

全文