摘要
由于PM2.5浓度预测中的影响因素过于复杂,影响因素的高维性与非线性对预测结果有着很大的干扰,容易产生PM2.5浓度预测误差高和模型泛化能力差等问题。针对上述缺陷,可通过一种基于随机森林-粒子群优化-极限学习机(RF-PSO-ELM)的PM2.5浓度预测模型解决。该模型首先使用随机森林算法对影响因素进行特征选择,选择出对于PM2.5浓度重要性高的因素构成特征;再利用提取得到的特征作为PSO-ELM算法的输入;最后对上海市的PM2.5浓度做出预测,从最终的实验数据中可以看出:该模型比支持向量机(SVM)、未优化的极限学习机(ELM)和反向神经网络(BPNN)等预测模型在预测精度和泛化能力方面有着显著的提高。
- 单位