摘要

针对TEC时间序列高噪声、非线性和非平稳的动态序列的特性,基于分解-预测-重构的思想,运用总体经验模态分解和深度学习长短期记忆神经网络,构建了EEMD-LSTM预测模型。同时,以测试集上预测结果的均方根误差最小为目标,运用多层网格搜索算法对EMD-LSTM预测模型进行参数优选。以IGS中心2015年全年1 h时间尺度的TEC格网数据进行实验分析,结果表明,EEMD-LSTM组合模型的预报结果能够很好的反应电离层TEC的变化特性,在低、中、高纬度地区平均预报残差分别为1.37、0.82和0.96个TECu,预测平均相对精度分别为92.8%、91.9%和87.8%。

全文