摘要
针对六维力传感器的维间耦合严重影响测量精度的问题,提出了一种基于改进烟花算法优化极限学习机(IFWA-ELM)的解耦算法。首先,对烟花算法的爆炸半径、变异算子和选择策略进行改进,形成改进烟花算法(IFWA)。其次,采用改进烟花算法寻找极限学习机的最佳网络参数,解决极限学习机随机生成初始权值和阈值导致网络不稳定、隐含层神经元数量对网络性能影响较大的问题。为了验证算法的解耦性能,以应用于4 500 m深海机械臂的六维力传感器作为研究对象,采用最小二乘法(LS)、BP神经网络(BPNN)、极限学习机(ELM)和IFWA-ELM算法进行解耦实验。实验结果表明:IFWA-ELM算法具有较好的非线性解耦能力,解耦后Ⅰ类误差控制在0.27%以内,Ⅱ类误差控制在0.13%以内,有效提高了六维力传感器的测量精度。
- 单位