摘要

材料信息学作为材料领域一种新的研究方法,引起了国内外广泛的关注。随着材料数据的快速增加,机器学习方法也越来越多地被应用在材料数据的分析中,并有望从大量的材料数据中获取具有指导性的材料学规律。采用卷积神经网络模型,使用从材料数据库中收集得到的4000多种材料的数据,对材料的形成能进行预测并得到了较为准确的预测结果。随后对材料特征矩阵的梯度进行分析,发现了梯度与材料性能间有一定的相关性,并可在梯度矩阵的指导下找到具有目标性能的材料特征矩阵分布。最后对卷积神经网络中识别出的特征模式进行了分析,进一步验证了卷积神经网络具有较好的材料性能预测能力。