基于分解的演化多目标优化算法综述

作者:高卫峰; 刘玲玲; 王振坤; 公茂果*
来源:软件学报, 2023, 34(10): 4743-4771.
DOI:10.13328/j.cnki.jos.006672

摘要

基于分解的演化多目标优化算法(MOEA/D)的基本思想是将一个多目标优化问题转化成一系列子问题(单目标或者多目标)来进行优化求解.自2007年提出以来, MOEA/D受到了国内外学者的广泛关注,已经成为最具代表性的演化多目标优化算法之一.总结过去13年中关于MOEA/D的一些研究进展,具体内容包括:(1)关于MOEA/D的算法改进;(2) MOEA/D在超多目标优化问题及约束优化问题上的研究;(3) MOEA/D在一些实际问题上的应用.然后,实验对比几个具有代表性的MOEA/D改进算法.最后,指出一些MOEA/D未来的研究方向.

全文