摘要
随着Android操作系统在智能设备上的广泛应用,Android应用的安全性检测成为了当前关注的重点。为了从Android应用程序中检测出恶意软件,研究Android应用静态分析技术、动态分析技术及基于机器学习的Android应用检测技术。提出一个通用的恶意软件检测框架。该框架通过逆向工程从Android应用中提取(安全应用、受感染应用)特征信息并建立关键信息特征库。通过机器学习建立检测模型,采用分类检测技术完成检测。通过该检测框架,可在软件安装前执行应用安全评估,其检测正确率高,并具有良好的扩展性,为Android应用的安全性检测提供参考。
-
单位陕西师范大学; 重庆师范大学涉外商贸学院