摘要
针对锅炉飞灰含碳量的预测问题,提出了自适应扰动量子粒子群优化的支持向量回归机方法(ADQPSO-SVR),即在量子粒子群优化算法(QPSO)的基础上加入自适应扰动,克服了支持向量回归机(SVR)经验选择学习参数的弊端。用此改进算法对SVR的学习参数进行寻优,经过实例研究表明,ADQPSO算法的寻优能力较强,利用ADQPSO算法得到的SVR模型有较高的预测精度,同时与GA-BP算法和GA-RBF算法相比,ADQPSO-SVR能够提高锅炉飞灰含碳量预测的准确性及稳定性。
- 单位
针对锅炉飞灰含碳量的预测问题,提出了自适应扰动量子粒子群优化的支持向量回归机方法(ADQPSO-SVR),即在量子粒子群优化算法(QPSO)的基础上加入自适应扰动,克服了支持向量回归机(SVR)经验选择学习参数的弊端。用此改进算法对SVR的学习参数进行寻优,经过实例研究表明,ADQPSO算法的寻优能力较强,利用ADQPSO算法得到的SVR模型有较高的预测精度,同时与GA-BP算法和GA-RBF算法相比,ADQPSO-SVR能够提高锅炉飞灰含碳量预测的准确性及稳定性。