摘要
【目的】及时、准确地掌握林地信息是森林经营管理的前提,高分辨率遥感影像为林地信息精细识别提供了可能。【方法】以当阳市玉泉乡为研究区,以国产卫星高景一号(SV-1)遥感影像为数据源,提取各波段光谱信息和植被指数作为分类特征,采用特征可分性、重要性及特征间冗余度分别构建了4种特征评价准则,基于支持向量机(SVM)分类器对研究区进行林地信息提取,结合森林资源二类调查结果进行精度验证。【结果】1)评价准则中,特征重要性优于可分性,特征可分性受高度相关的特征组合(如OSAVI和NDVI等)的影响会造成分类精度的下降。2)在特征重要性和可分性的基础上结合特征间冗余度能进一步提高分类精度并有效降低特征维数,特征维数由11维降至8维,特征可分性方法和特征重要性的分类精度分别提高了4.65%和4.58%;3)根据特征重要性结合冗余度选择RGVI、EVI、B1、B3、B2、DVI、RVI、Brightness 8个特征,建立SVM线性核分类模型可以达到最优分类效果,总体分类精度高达92.49%,Kappa系数为0.908 4。【结论】SV-1遥感影像由于其高空间分辨率在林地信息精细提取中具有可行性,本研究通过建立特征评价准则筛选分类特征能进一步挖掘分类器的泛化能力,为及时、准确地获取林地信息提供技术支撑,同时也为同等高分辨率遥感卫星数据处理提供了参考。
- 单位