摘要

针对滚动轴承信号重构误差大,信号来源复杂等问题,提出了变分模态分解(VMD)算法与VGG神经网络相结合的滚动轴承故障诊断方法。首先,为避免VMD在工程应用中人为参数设置不合理导致的模态混叠等现象,提出应用中心频率计算分离系数,选取最佳模态个数的策略;然后,对VMD分解后各模态分量的能量熵与频率峰值等进行数值分析,剔除能量熵较小的信号,并将各模态信号依据频率峰值进行重构,得到故障特征向量;最后,构建VGG故障诊断模型,实现滚动轴承的故障分类。轴承振动信号与电动机定子电流信号对所提方法的验证结果表明,VMD-VGG方法可以有效分解这2种故障信号,而且具有较高的故障识别精度。

全文