摘要
矿山开采区地表变形是资源开采引起的重要现象。监测、分析其内在规律,建立预测模型预计开采区地表沉降,对矿山安全生产和企业经济可持续发展具有重要意义。针对地表沉降变形预测,分别建立了BP人工神经网络模型、灰度预测模型、时间序列模型以及灰色神经网络组合模型,探讨四种模型适用场景及模型局限性,结合矿区地表一年的实际监测值进行模型精度评定,分析比较四种模型的模型特点以及预测结果。综合比较表明组合模型融合了BP神经网络与灰度预测模型的优势,预测精度高,更加贴合实际测量值,且广泛适应性强,可适用于多种应用场景,能较好地反映矿区地表沉陷变形发展趋势。
-
单位河南理工大学; 中国科学院测量与地球物理研究所; 大地测量与地球动力学国家重点实验室