摘要
木质化鸡胸肉(wooden breast,WB)制约肉鸡行业发展,传统触诊检测方法耗时且效率低,为提升高光谱成像(hyperspectral imaging, HSI)技术检测鸡胸肉木质化程度的效果,本论文以白羽鸡鸡胸肉为研究对象,将其划分4个木质化等级,采集其在400-1000 nm和1000-2000 nm内的HSI信息,通过不同光谱预处理算法和特征波段筛选方法,建立基于全波段、特征波段和HSI数据融合的偏最小二乘判别分析(Partial least squares-discriminant analysis, PLS-DA)模型和支持向量机(Support vector machine, SVM)模型。结果显示,SVM模型比PLS-DA模型更适于判别鸡胸肉木质化程度,基于1000-2000 nm内全波段和特征波段的最佳模型预测集总体正确率均高于400-1000 nm内的模型,基于两波段HSI数据融合的木质化判别模型优于基于单一波段(包括全波段和特征波段)的模型,最佳模型预测集总体正确率为96.7%,能较好地区分出4个木质化等级,且对四个等级的判别准确率均可达90%以上。研究结果为HSI实现木质化鸡胸肉的准确无损检测提供技术支持。
- 单位