摘要
当下,面向多圈层耦合、人类干扰强烈的复杂自然场景遥感智能解译在地学研究和实际业务中常存在不好用的问题。为此,本文从遥感地学认知原理角度出发,在明晰遥感智能解译的使命是依托遥感大数据更好地辅助建立数字地球之后,认为达成一致的知识表征模型是解决问题的关键,进而提出遥感解译与地学认知应该耦合为一个系统,以实现“数据获取知识”与“知识引导数据”的双向驱动。在此基础上,提出以遥感地学分区为纽带的智能解译框架,以打通已有地学知识向遥感智能解译过程的输入与引导,增加解译结果与已有地学知识体系的匹配度。该框架主要依靠定量化的场景复杂性度量和地理分区知识耦合,形成面向遥感智能解译的地学分区方法以及分区样本抽样与规范,从而实现面向大区域的知识耦合下分区解译策略。通过复杂度与优化抽样实验、影像分区分割尺度优选、耕地类型细分等实验,初步揭示了本框架思路在优选样本、影像分割、耕地精细类型识别等遥感智能解译多方面均存在巨大潜力。
-
单位遥感科学国家重点实验室; 中国科学院; 中国科学院地理科学与资源研究所; 中国科学院大学; 资源与环境信息系统国家重点实验室