摘要

CPLS(Concurrent PLS)对PLS分解的过程变量和质量变量的残差和主元进行进一步的提取,从而将变量投影到五个子空间,并由此构建了对过程变量和质量变量信息的完整监控框架。但是,在CPLS中,假设残差为可以求解的确定值,而残差本质上为随机分布量。因此,采用随机模型及其基于随机模型的监控更能反应残差的特性。在基于CPLS的过程监控中,采用因子分析(FA)算法对PLS中的残差进行分析,建立了基于FA的改进CPLS模型,并构建了符合正态分布假设条件的监控指标,提高了监控指标与建模指标的一致性。

全文