摘要

提高农田管理的资源施用效率和持续培育优良作物品种是确保粮食产量和减轻作物生产对环境影响的关键途径。作物胁迫感知和植物表型测量系统是田间变量管理和高通量植物表型测量研究的核心,且两者在硬件和数据处理技术上具有相似性。几十年来,人们一直在开发可以用在田间变量管理领域的作物胁迫感知系统,旨在建立更加可持续的田间管理方案。与此同时,田间高通量表型系统开发取得的重大进展为降低传统表型测量成本提供了技术基础。本文首先对田间变量管理中涉及的作物胁迫感知系统进行了回顾,特别对目前用于精准灌溉、氮素施用和农药喷洒中的感知和决策方法进行了总结。基于作者团队在内布拉斯加大学林肯分校开发的三套田间表型测量系统,对常见田间高通量表型测量系统的传感器和数据的处理分析流程进行了介绍。此外,讨论了当前田间表型测量系统面临的挑战并提出了潜在解决方案。人工智能、机器人平台和创新仪器的持续发展有望显著提高测量系统的性能,对系统在育种中的大范围应用起到积极作用。对主要植物生理过程更直接的测量可能成为未来田间表型研究领域的研究热点之一,并为培育更耐胁迫的作物新品种提供有价值的表型数据。这篇综述可为田间变量管理和高通量植物表型测量两个研究领域提供参考和独特的见解。