摘要
在光声成像中,由于组织的吸收和扩散等引起的超声波衰减、由声速变化引起的相位偏差以及与声衰减相关的信号波形展宽都会降低图像的空间分辨率。针对该问题,提出一种基于深度学习的声学特性非均匀组织图像重建方法。像域的转换。U-Net模块实现对DGD模块输出的低质量图像的优化,实现图像域到图像域的转换。仿真、仿体和在体实验结果表明,与传统的非学习图像重建方法和基于图像后处理的深度学习方法相比,采用该方法重建的图像结构相似度和峰值信噪比分别可提高约20%和10%。AAR-Net无需任何有关成像对象声学特性的先验知识,即可重建高质量图像。
- 单位