摘要

本发明公开了一种基于网络结构和时序的机会网络链路预测方法,包括:S1,在原矩阵森林指数的基础上从连接次数和连接时长两个方面重定义矩阵森林指数;S2,分别计算原矩阵森林指数和重定义的矩阵森林指数的相似性矩阵;S3,构建混合矩阵森林指数,采用量子粒子群优化算法为原矩阵森林指数和重定义的矩阵森林指数寻找最优权重分配,通过加权得到混合矩阵森林指数相似性矩阵,进而得到预测结果。本发明一方面利用原矩阵森林指数采集多个时刻网络的局部信息,另一方面利用重定义的矩阵森林指数,从连接时长和连接次数全局角度采集网络的状态,最后通过对两个方面合理加权,能够提高机会网络中链路预测的准确性。