摘要

随着计算机技术的进步以及机器学习算法的进一步发展,深度学习方法逐渐被广泛应用于各行各业中.论文发展并比较了适应于工程计算的深度配点法与深度能量法并应用于求解薄板弯曲问题.深度配点法采用物理信息驱动的深度神经网络,通过将物理信息(偏微分方程强形式)引入到损失函数中,最终将求解薄板弯曲问题简化为优化问题.深度能量法则是采用系统总势能驱动的神经网络.根据最小势能原理,在所有的可能位移场中,真实位移场的总势能取最小值,因此我们可以使用总势能构造损失函数,从而求解薄板弯曲问题.对于边界条件,通过罚函数法将有约束最优化问题转化为求解无约束最优化问题.深度配点法与深度能量法的适用性基于神经网络的通用近似定理.由于物理信息跟总势能的引入,增加了神经网络训练的困难,为了解决这个问题,我们发展了两步优化器方法.数值结果表明,深度配点法与深度能量法很适合求解薄板弯曲问题,并且程序实现简单,实现了真正意义上的"无网格法".

  • 单位
    同济大学; 岩土及地下工程教育部重点实验室; 土木工程学院

全文