摘要
Range Cell Migration Correction (RCMC) represents an important advance in moving target imaging in the airborne single antenna high-resolution SAR system. In this paper, we propose a new four-step RCMC approach combined with parameter estimation that overcomes the drawbacks of high computation and low accuracy in high-resolution. First, we use the Hough transform and the energy balancing method to estimate the range velocity and correct the range walk. Next, we perform a range curvature correction in the range-Doppler domain by using the initial Doppler rate. Thirdly, we accurately estimate the Doppler rate using Map-drift technology. Finally, we correct the residual range curvature by the accurate Doppler rate. Compared with traditional algorithms, the proposed method requires less computation and is robust in the high-resolution SAR system. In this paper, we present a mathematical model and validate its effectiveness using both simulation and real data.
- 单位