基于Android平台的yolox目标检测轻量化改进方法

作者:张文博; 马梓益; 姬红兵; 李林; 臧博; 常超
来源:2023-03-13, 中国, CN202310233273.X.

摘要

基于Android平台的yolox目标检测轻量化改进方法,包括以下步骤;步骤1:收集和准备训练时所需带有标注的图像和对应的标签数据,并对数据进行预处理;步骤2:将原来的BCE交叉熵损失函数替换为现在的varifocalloss损失函数;步骤3:将原有的CSPDarknet网络替换为MobileNet网络;步骤4:采用yolox算法对所述步骤1的数据集进行训练,通过反向传播算法不断优化模型参数;步骤5:转换模型格式:将训练好的MobileNet网络格式转换为Android设备可读取的格式;步骤6:部署模型:将格式转换后部署到Android设备上,并利用Android平台的GPU加速技术加速模型的推理过程;步骤7:实现目标检测。本发明能够在保证目标检测精度的前提下,大幅降低模型的计算和存储开销,提高移动设备上的目标检测性能和效率。