YOLOv5上融合多特征的实时火焰检测方法

作者:张大胜; 肖汉光*; 文杰; 徐勇
来源:模式识别与人工智能, 2022, 35(06): 548-561.
DOI:10.16451/j.cnki.issn1003-6059.202206007

摘要

在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征融合,提出实时高效的火焰检测方法.为了缓解正负样本不均衡问题,并充分利用困难样本的信息,引入焦点损失函数,同时结合火焰静态特征和动态特征,设计多特征融合方法,达到剔除误报火焰的目的.针对国内外缺乏火焰数据集的问题,构建大规模、高质量的十万量级火焰数据集(http://www.yongxu.org/databases.html).实验表明,文中方法在准确率、速度、精度和泛化能力等方面均有明显提升,同时降低误报率.

全文