摘要

为了有效提取高光谱图像的空间和光谱维特征,获得准确率和分类效率俱佳的方法,利用52个不同方向和频率的3-D Gabor滤波器提取图像的纹理特征,结合梯度优化决策树分类器(GBDT)完成高光谱图像分类。结果表明3-D Gabor+GBDT方法的分类准确率高于CNN算法、Gabor以及EMAP为纹理特征的方法,且高于CNN和以SVM为分类器的方法。虽然3-D Gabor+GBDT建模训练时间长,但是该方法在保持高准确率的前提下,分类效率依然较高,适合大规模高光谱图像的在线分类场景。

  • 单位
    浙江警察学院