摘要

【目的】针对标准协同训练中视图分割不充分冗余导致两个分类器误差累积加大,且两个分类器对同一个未标记样本分类不一致的问题,提出了结合信息增益率和K-means聚类的协同训练算法。【方法】该算法先根据有标记样本计算出数据中每一个特征的信息增益率,将信息增益率高的特征平均划分到两个视图,再在每次分类过程中应用K-means聚类确定标记不一致样本点的最终类别。【结果】通过在9个UCI数据集上的3组实验表明,与对比算法相比,所提算法中两视图分类器的平均正确率差值降低了2.9%,有效均衡了分类器性能,同时在分类准确率和算法稳定性上也有较大提升。【结论】利用信息增益率将关键特征均衡划分到两个视图,有效解决了视图分割不充分冗余问题;K-means聚类重新分类标记不一致的样本,降低了样本被误分类的概率。