摘要

多目标跟踪的研究对于构建人、路、车、云协同一体化的智能交通监控系统具有广泛的应用价值,传统手工设计特征的方法对高层信息的表征能力有限,难以进行复杂场景下的多目标跟踪,随着深度学习的发展,多目标跟踪算法的性能取得较大进展.为了宏观把握基于深度学习的多目标跟踪算法的研究进展,首先比较基于检测的跟踪算法、基于联合检测与跟踪算法、基于单目标跟踪器的多目标跟踪算法的优缺点;然后介绍多目标跟踪算法在智能交通监控场景的应用;最后总结目前多目标跟踪存在的问题与挑战,对多目标跟踪算法未来在智能交通领域的发展进行思考和展望.

全文