基于图卷积网络的多标签遥感图像分类

作者:杨敏航; 陈龙; 刘慧; 钱育蓉*
来源:计算机应用研究, 2021, 38(11): 3439-3445.
DOI:10.19734/j.issn.1001-3695.2021.04.0153

摘要

由于遥感图像包含物体类别多样,单个语义类别标签无法全面地描述图像内容,而多标签图像分类任务更加具有挑战性。通过探索深度图卷积网络(GCN),解决了多标签遥感图像分类缺乏对标签语义信息相关性利用的问题,提出了一种新的基于图卷积的多标签遥感图像分类网络,它包含图像特征学习模块、基于图卷积网络的分类器学习模块和图像特征差异化模块三个部分。在公开多标签遥感数据集Planet和UCM上与相关模型进行对比,在多标签遥感图像分类任务上可以得到了较好的分类结果。该方法使用图卷积等模块将多标签图像分类方法应用到遥感领域,提高了模型分类能力,缩短了模型训练时间。

全文