摘要

基于模型诊断是人工智能研究与发展中的重要方向之一,而求解极小冲突集(minimal conflict set, MCS)是模型诊断的关键步骤.MCS-SFFO(minimal conflict set-structural feature of fault output)方法以反向深度的方式遍历集合枚举树(set enumeration tree, SE-Tree),然后针对故障输出无关元件的组合进行剪枝.在MCS-SFFO方法的基础上,结合电路的故障逻辑关系提出求解极小冲突集的进一步剪枝方法MCS-FLR(minimal conflict set-fault logic relationship):首先提出单元件非冲突集定理,对单元件集合进行剪枝,避免了对无解空间中单元件节点的访问;其次,提出非极小冲突集定理,推证得出故障输出相关元件集的超集都是冲突集,故对有解空间中的非极小解进行剪枝.MCS-FLR方法在MCS-SFFO方法基础上减少了大量有解空间和部分无解空间调用SAT求解器的次数,节省了求解时间.实验结果表明:相比于MCS-SFFO方法,MCS-FLR方法求解效率有显著提高.