摘要

为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体。优秀个体只在其贮藏食物的巢穴附近开展局部搜索活动。多数普通个体以优秀个体贮藏食物之巢穴为导向,在算法前期以较大步长进行全局探索,保持了种群的多样性;算法后期则以较短步长进行局部开发,使算法的全局探索能力和局部开发能力均得到了增强。通过12个基准函数和3个工程应用问题的数值实验,结果表明EICSA的全局优化能力得到了明显提高,在函数和工程应用问题优化中具有较快的全局收敛速度、较好的优化精度和稳定性。